Evaluation of human dermal fibroblasts directly reprogrammed to adipocyte-like cells as a metabolic disease model
نویسندگان
چکیده
Adipose tissue is the primary tissue affected in most single gene forms of severe insulin resistance, and growing evidence has implicated it as a site at which many risk alleles for insulin resistance identified in population-wide studies might exert their effect. There is thus increasing need for human adipocyte models in which to interrogate the function of known and emerging genetic risk variants. However, primary adipocyte cultures, existing immortalised cell lines and stem-cell based models all have significant biological or practical limitations. In an attempt to widen the repertoire of human cell models in which to study adipocyte-autonomous effects of relevant human genetic variants, we have undertaken direct reprogramming of skin fibroblasts to adipocyte-like cells by employing an inducible recombinant lentivirus overexpressing the master adipogenic transcription factor PPARγ2. Doxycycline-driven expression of PPARγ2 and adipogenic culture conditions converted dermal fibroblasts into triglyceride-laden cells within days. The resulting cells recapitulated most of the crucial aspects of adipocyte biology in vivo, including the expression of mature adipocyte markers, secreted high levels of the adipokine adiponectin, and underwent lipolysis when treated with isoproterenol/3-isobutyl-1-methylxanthine (IBMX). They did not, however, exhibit insulin-inducible glucose uptake, and withdrawal of doxycycline produced rapid delipidation and loss of adipogenic markers. This protocol was applied successfully to a panel of skin cells from individuals with monogenic severe insulin resistance; however, surprisingly, even cell lines harbouring mutations causing severe, generalised lipodystrophy accumulated large lipid droplets and induced adipocyte-specific genes. The direct reprogramming protocol of human dermal fibroblasts to adipocyte-like cells we established is simple, fast and efficient, and has the potential to generate cells which can serve as a tool to address some, though not all, aspects of adipocyte function in the presence of endogenous disease-causing mutations.
منابع مشابه
Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect
Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملComparison of a Suggested Model of Fibrosis in Human Dermal Fibroblasts by Serum from Systemic Sclerosis Patients with Transforming Growth Factor β Induced in vitro Model
Systemic sclerosis (SSc) is a chronic autoimmune disease, featuring fibrosis in multiple organs. The serum from SSc patients contain inflammatory mediators, contributing to SSc pathogenesis and could be used to develop cell culture models. Here, we compared the fibrotic effects of serum samples from SSc patients with TGFβ1 on human dermal fibroblasts (HDFs). HDF cells were cultured in four diff...
متن کاملCytotoxic and Anticancer Effects of ICD-85 (Venom Derived Peptides) in Human Breast Adenocarcinoma and Normal Human Dermal Fibroblasts
ICD-85 (venom derived peptides) has anti-proliferative effect and anti-angiogenesis activity on cancer cells. This study was performed to test the effect of ICD-85, on Human breast adenocarcinoma (MCF-7) and normal Human Dermal Fibroblasts (HDF) cell lines. In this experimental study, Mitochondrial activity, Neutral red uptake, Lactate dehydrogenase (cell necrosis), and cell morphology we...
متن کاملA Study of Cytogenetic Stability of Induced Pluripotent Stem Cells Using Karyotyping and Comet Assay Techniques
Background & Aims: Induced pluripotent stem cells (iPSCs) have the capability to undergo unlimited selfrenewal and differentiation into all cell types in the body. These cells are artificially derived from a nonpluripotent cell, typically human dermal fibroblasts (HDFs). The study of cytogenetic stability of these cells, in order to use iPS cells and apply studies in therapeutic applications, i...
متن کامل